Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Molecules ; 27(4)2022 Feb 13.
Article in English | MEDLINE | ID: covidwho-1686904

ABSTRACT

(1) Background: Acne is a widespread skin disease, especially among adolescents. Following the COVID-19 pandemic and the use of masks, the problem has been affecting a greater number of people, and the attention of the skin care beauty routine cosmetics has been focused on the "Maskne", caused by the sebum excretion rate (SER) that stimulates microbial proliferation. (2) Methods: the present study was focused on the rheological characterization and quality assurance of the preservative system of an anti-acne serum. The biological effectiveness (cytotoxicity-skin and eye irritation-antimicrobial, biofilm eradication and anti-inflammatory activity) was evaluated in a monolayer cell line of keratinocytes (HaCaT) and on 3D models (reconstructed human epidermis, RHE and human reconstructed corneal epithelium, HCE). The Cutibacterium acnes, as the most relevant acne-inducing bacterium, is chosen as a pro-inflammatory stimulus and to evaluate the antimicrobial activity of the serum. (3) Results and Conclusions: Rheology allows to simulate serum behavior at rest, extrusion and application, so the serum could be defined as having a solid-like behavior and being pseudoplastic. The preservative system is in compliance with the criteria of the reference standard. Biological effectiveness evaluation shows non-cytotoxic and irritant behavior with a good antimicrobial and anti-inflammatory activity of the formulation, supporting the effectiveness of the serum for acne-prone skin treatment.


Subject(s)
Acne Vulgaris/drug therapy , Anti-Bacterial Agents , Biofilms/drug effects , COVID-19 , Cosmeceuticals , Pandemics , Propionibacteriaceae/physiology , SARS-CoV-2 , Acne Vulgaris/microbiology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Line, Transformed , Cosmeceuticals/chemistry , Cosmeceuticals/pharmacology , Humans
2.
Biomed Res Int ; 2021: 2347872, 2021.
Article in English | MEDLINE | ID: covidwho-1582891

ABSTRACT

INTRODUCTION: Patients with acute respiratory distress syndrome caused by coronavirus disease 2019 (COVID-19) are at risk for superadded infections, especially infections caused by multidrug resistant (MDR) pathogens. Before the COVID-19 pandemic, the prevalence of MDR infections, including infections caused by MDR Klebsiella pneumoniae (K. pneumoniae), was very high in Iran. This study is aimed at assessing the genetic diversity, antimicrobial resistance pattern, and biofilm formation in K. pneumoniae isolates obtained from patients with COVID-19 and ventilator-associated pneumonia (VAP) hospitalized in an intensive care unit (ICU) in Iran. METHODS: In this cross-sectional study, seventy K. pneumoniae isolates were obtained from seventy patients with COVID-19 hospitalized in the ICU of Shahid Beheshti hospital, Kashan, Iran, from May to September, 2020. K. pneumoniae was detected through the ureD gene. Antimicrobial susceptibility testing was done using the Kirby-Bauer disc diffusion method, and biofilm was detected using the microtiter plate assay method. Genetic diversity was also analyzed through polymerase chain reaction based on enterobacterial repetitive intergenic consensus (ERIC-PCR). The BioNumerics software (v. 8.0, Applied Maths, Belgium) was used for analyzing the data and drawing dendrogram and minimum spanning tree. Findings. K. pneumoniae isolates had varying levels of resistance to antibiotics meropenem (80.4%), cefepime-aztreonam-piperacillin/tazobactam (70%), tobramycin (61.4%), ciprofloxacin (57.7%), gentamicin (55.7%), and imipenem (50%). Around 77.14% of isolates were MDR, and 42.8% of them formed biofilm. Genetic diversity analysis revealed 28 genotypes (E1-E28) and 74.28% of isolates were grouped into ten clusters (i.e., clusters A-J). Clusters were further categorized into three major clusters, i.e., clusters E, H, and J. Antimicrobial resistance to meropenem, tobramycin, gentamicin, and ciprofloxacin in cluster J was significantly higher than cluster H, denoting significant relationship between ERIC clusters and antimicrobial resistance. However, there was no significant difference among major clusters E, H, and J respecting biofilm formation. CONCLUSION: K. pneumoniae isolates obtained from patients with COVID-19 have high antimicrobial resistance, and 44.2% of them have genetic similarity and can be clustered in three major clusters. There is a significant difference among clusters respecting antimicrobial resistance.


Subject(s)
Biofilms/growth & development , COVID-19/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Genetic Variation/genetics , Klebsiella Infections/microbiology , Klebsiella pneumoniae/genetics , Pneumonia, Ventilator-Associated/microbiology , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , COVID-19/virology , Cross-Sectional Studies , Humans , Intensive Care Units , Iran , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests/methods , Pandemics/prevention & control , Pneumonia, Ventilator-Associated/virology
3.
Bioorg Chem ; 119: 105550, 2022 02.
Article in English | MEDLINE | ID: covidwho-1561636

ABSTRACT

Infectious diseases caused by new or unknown bacteria and viruses, such as anthrax, cholera, tuberculosis and even COVID-19, are a major threat to humanity. Thus, the development of new synthetic compounds with efficient antimicrobial activity is a necessity. Herein, rationally designed novel multifunctional cationic alternating copolymers were directly synthesized through a step-growth polymerization reaction using a bivalent electrophilic cross-linker containing disulfide bonds and a diamine heterocyclic ring. To optimize the activity of these alternating copolymers, several different diamines and cross-linkers were explored to find the highest antibacterial effects. The synthesized nanopolymers not only displayed good to excellent antibacterial activity as judged by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, and Escherichia coli, but also reduced the number of biofilm cells even at low concentrations, without killing mammalian cells. Furthermore, in vivo experiments using infected burn wounds in mice demonstrated good antibacterial activity and stimulated wound healing, without causing systemic inflammation. These findings suggest that the multifunctional cationic nanopolymers have potential as a novel antibacterial agent for eradication of multidrug resistant bacterial infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Biofilms/drug effects , Cations/pharmacology , Polymers/pharmacology , Wound Healing/drug effects , Amines/chemistry , Animals , Bacteria/drug effects , Bacterial Infections/drug therapy , Bacterial Infections/etiology , Burns/complications , COVID-19 , Cell Survival/drug effects , Cross-Linking Reagents , Drug Resistance, Multiple, Bacterial/drug effects , HEK293 Cells/drug effects , Humans , Mice , Microbial Sensitivity Tests , Polymers/chemistry
4.
Int J Mol Sci ; 22(22)2021 Nov 20.
Article in English | MEDLINE | ID: covidwho-1534089

ABSTRACT

Carbapenem-resistant A. baumannii (CRAB) infection can cause acute host reactions that lead to high-fatality sepsis, making it important to develop new therapeutic options. Previously, we developed a short 9-meric peptide, Pro9-3D, with significant antibacterial and cytotoxic effects. In this study, we attempted to produce safer peptide antibiotics against CRAB by reversing the parent sequence to generate R-Pro9-3 and R-Pro9-3D. Among the tested peptides, R-Pro9-3D had the most rapid and effective antibacterial activity against Gram-negative bacteria, particularly clinical CRAB isolates. Analyses of antimicrobial mechanisms based on lipopolysaccharide (LPS)-neutralization, LPS binding, and membrane depolarization, as well as SEM ultrastructural investigations, revealed that R-Pro9-3D binds strongly to LPS and impairs the membrane integrity of CRAB by effectively permeabilizing its outer membrane. R-Pro9-3D was also less cytotoxic and had better proteolytic stability than Pro9-3D and killed biofilm forming CRAB. As an LPS-neutralizing peptide, R-Pro9-3D effectively reduced LPS-induced pro-inflammatory cytokine levels in RAW 264.7 cells. The antiseptic abilities of R-Pro9-3D were also investigated using a mouse model of CRAB-induced sepsis, which revealed that R-Pro9-3D reduced multiple organ damage and attenuated systemic infection by acting as an antibacterial and immunosuppressive agent. Thus, R-Pro9-3D displays potential as a novel antiseptic peptide for treating Gram-negative CRAB infections.


Subject(s)
Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Drug Resistance, Bacterial/genetics , Peptides/pharmacology , Acinetobacter Infections/genetics , Acinetobacter Infections/microbiology , Acinetobacter baumannii/pathogenicity , Anti-Infective Agents, Local/pharmacology , Biofilms/drug effects , Carbapenems/adverse effects , Carbapenems/pharmacology , Humans , Microbial Sensitivity Tests
5.
Sci Rep ; 11(1): 22543, 2021 11 19.
Article in English | MEDLINE | ID: covidwho-1526103

ABSTRACT

Microbial contamination is one of the major dreadful problems that raises hospitalization, morbidity and mortality rates globally, which subsequently obstructs socio-economic progress. The continuous misuse and overutilization of antibiotics participate mainly in the emergence of microbial resistance. To circumvent such a multidrug-resistance phenomenon, well-defined nanocomposite structures have recently been employed. In the current study, a facile, novel and cost-effective approach was applied to synthesize Ag@Ag2O core-shell nanocomposites (NCs) via chemical method. Several techniques were used to determine the structural, morphological, and optical characteristics of the as-prepared NCs. XRD, Raman, FTIR, XPS and SAED analysis revealed a crystalline hybrid structure of Ag core and Ag2O shell. Besides, SEM and HRTEM micrographs depicted spherical nanoparticles with size range of 19-60 nm. Additionally, zeta potential and fluorescence spectra illustrated aggregated nature of Ag@Ag2O NCs by - 5.34 mV with fluorescence emission peak at 498 nm. Ag@Ag2O NCs exhibited higher antimicrobial, antibiofilm, and algicidal activity in dose-dependent behavior. Interestingly, a remarkable mycocidal potency by 50 µg of Ag@Ag2O NCs against Candida albican; implying promising activity against COVID-19 white fungal post-infections. Through assessing cytotoxicity, Ag@Ag2O NCs exhibited higher safety against Vero cells than bulk silver nitrate by more than 100-fold.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Biofilms/drug effects , Nanocomposites/chemistry , Oxides/chemistry , Silver Compounds/chemistry , Animals , Anti-Infective Agents/chemical synthesis , Candida albicans/drug effects , Cell Survival/drug effects , Chlorella vulgaris/drug effects , Chlorocebus aethiops , Disinfectants/chemical synthesis , Disinfectants/chemistry , Disinfectants/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Metal Nanoparticles/chemistry , Oxides/chemical synthesis , Pseudomonas aeruginosa/drug effects , Silver Compounds/chemical synthesis , Silver Nitrate/pharmacology , Staphylococcus aureus/drug effects , Vero Cells
6.
Photochem Photobiol Sci ; 20(11): 1497-1545, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1491552

ABSTRACT

Photodynamic therapy is witnessing a revival of its origins as a response to the rise of multi-drug resistant infections and the shortage of new classes of antibiotics. Photodynamic disinfection (PDDI) of microorganisms is making progresses in preclinical models and in clinical cases, and the perception of its role in the clinical armamentarium for the management of infectious diseases is changing. We review the positioning of PDDI from the perspective of its ability to respond to clinical needs. Emphasis is placed on the pipeline of photosensitizers that proved effective to inactivate biofilms, showed efficacy in animal models of infectious diseases or reached clinical trials. Novel opportunities resulting from the COVID-19 pandemic are briefly discussed. The molecular features of promising photosensitizers are emphasized and contrasted with those of photosensitizers used in the treatment of solid tumors. The development of photosensitizers has been accompanied by the fabrication of a variety of affordable and customizable light sources. We critically discuss the combination between photosensitizer and light source properties that may leverage PDDI and expand its applications to wider markets. The success of PDDI in the management of infectious diseases will ultimately depend on the efficacy of photosensitizers, affordability of the light sources, simplicity of the procedures, and availability of fast and efficient treatments.


Subject(s)
Communicable Disease Control/methods , Drug Resistance, Microbial/drug effects , Drug Resistance, Multiple/drug effects , Photochemotherapy , Photosensitizing Agents/therapeutic use , Animals , Bacteria/drug effects , Biofilms/drug effects , Fungi/drug effects , Humans , Microbial Sensitivity Tests , Neoplasms/drug therapy , Photosensitizing Agents/pharmacology
7.
J Am Chem Soc ; 143(43): 17891-17909, 2021 11 03.
Article in English | MEDLINE | ID: covidwho-1483091

ABSTRACT

The emergence of multi-drug-resistant pathogens threatens the healthcare systems world-wide. Recent advances in phototherapy (PT) approaches mediated by photo-antimicrobials (PAMs) provide new opportunities for the current serious antibiotic resistance. During the PT treatment, reactive oxygen species or heat produced by PAMs would react with the cell membrane, consequently leaking cytoplasm components and effectively eradicating different pathogens like bacteria, fungi, viruses, and even parasites. This Perspective will concentrate on the development of different organic photo-antimicrobials (OPAMs) and their application as practical therapeutic agents into therapy for local infections, wound dressings, and removal of biofilms from medical devices. We also discuss how to design highly efficient OPAMs by modifying the chemical structure or conjugating with a targeting component. Moreover, this Perspective provides a discussion of the general challenges and direction for OPAMs and what further needs to be done. It is hoped that through this overview, OPAMs can prosper and will be more widely used for microbial infections in the future, especially at a time when the global COVID-19 epidemic is getting more serious.


Subject(s)
Anti-Infective Agents/chemistry , Drug Design , Phototherapy/methods , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Bacteria/drug effects , Biofilms/drug effects , Biofilms/radiation effects , Coloring Agents/chemistry , Coloring Agents/pharmacology , Equipment and Supplies/microbiology , Equipment and Supplies/virology , Escherichia coli/drug effects , Escherichia coli/physiology , Eye Diseases/drug therapy , Eye Diseases/pathology , Fungi/drug effects , Graphite/chemistry , Light , Nanoparticles/chemistry , Nanoparticles/toxicity , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Quantum Theory , Reactive Oxygen Species/metabolism , Viruses/drug effects
8.
Molecules ; 26(18)2021 Sep 11.
Article in English | MEDLINE | ID: covidwho-1410347

ABSTRACT

Current studies suggest that cariogenic bacteria in dental plaque influence the severity of COVID-19 complications since the oral cavity is a reservoir for respiratory pathogens potentially responsible for the development of hospital-acquired pneumonia. This article focuses on the association between dental plaque and COVID-19 concerning the influence of altered oral biofilm on the risk of increased severity of SARS-CoV-2 infection. Moreover, it concentrates on the usefulness of propolis, with its apitherapeutic antibacterial properties, for treating oral bacterial infections co-occurring with SARS-CoV-2 infection. A review of the literature on PubMed, Cochrane Library and Medline between 2000 and 2021 revealed 56 published articles indicating that a link between dental plaque and COVID-19 complications was probable. Furthermore, they indicated that propolis may minimize COVID-19 severity by reducing dental plaque accumulation. The possibility that improved oral health could reduce the risk of COVID-19 complications should be of interest to scientists.


Subject(s)
Biofilms , COVID-19 Drug Treatment , COVID-19 , Dental Caries , Dental Plaque , Mouth Diseases , Propolis/therapeutic use , Animals , Anti-Infective Agents/therapeutic use , Biofilms/drug effects , COVID-19/microbiology , Dental Caries/drug therapy , Dental Caries/microbiology , Dental Plaque/drug therapy , Dental Plaque/microbiology , Humans , Mouth Diseases/drug therapy , Mouth Diseases/microbiology , Oral Health
9.
Molecules ; 26(17)2021 Aug 27.
Article in English | MEDLINE | ID: covidwho-1403854

ABSTRACT

This paper presents the results of the first part of testing a novel electrospun fiber mat based on a unique macromolecule: polyisobutylene (PIB). A PIB-based compound containing zinc oxide (ZnO) was electrospun into self-supporting mats of 203.75 and 295.5 g/m2 that were investigated using a variety of techniques. The results show that the hydrophobic mats are not cytotoxic, resist fibroblast cell adhesion and biofilm formation and are comfortable and easy to breathe through for use as a mask. The mats show great promise for personal protective equipment and other applications.


Subject(s)
Polyenes/chemistry , Polymers/chemistry , Biofilms/drug effects , Cell Adhesion/drug effects , Cells, Cultured , Fibroblasts/drug effects , Humans , Materials Testing/methods , Nanofibers/chemistry , Zinc Oxide/chemistry
10.
Appl Biochem Biotechnol ; 194(2): 671-693, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1375835

ABSTRACT

The growth of respiratory diseases, as witnessed through the SARS and COVID-19 outbreaks, and antimicrobial-resistance together pose a serious threat to humanity. One reason for antimicrobial resistance is formation of bacterial biofilms. In this study the sulphated polysaccharides from green algae Chlamydomonas reinhardtii (Cr-SPs) is tested for its antibacterial and antibiofilm potential against Klebsiella pneumoniae and Serratia marcescens. Agar cup assay clearly indicated the antibacterial potential of Cr-SPs. Minimum inhibitory concentration (MIC50) of Cr-SPs against Klebsiella pneumoniae was found to be 850 µg/ml, and it is 800 µg/ml in Serratia marcescens. Time-kill and colony-forming ability assays suggest the concentration-dependent bactericidal potential of Cr-SPs. Cr-SPs showed 74-100% decrease in biofilm formation in a concentration-dependent manner by modifying the cell surface hydrophobic properties of these bacteria. Cr-SPs have also distorted preformed-biofilms by their ability to interact and destroy the extra polymeric substance and eDNA of the matured biofilm. Scanning electron microscopy analysis showed that Cr-SPs effectively altered the morphology of these bacterial cells and distorted the bacterial biofilms. Furthermore reduced protease, urease and prodigiosin pigment production suggest that Cr-SPs interferes the quorum sensing mechanism in these bacteria. The current study paves way towards developing Cr-SPs as a control strategy for treatment of respiratory tract infections.


Subject(s)
Biofilms/drug effects , Polysaccharides/pharmacology , Quorum Sensing/drug effects , Respiratory Tract Infections/drug therapy , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , COVID-19/virology , Chlorophyta/chemistry , Humans , Klebsiella pneumoniae/growth & development , Klebsiella pneumoniae/pathogenicity , Microbial Sensitivity Tests , Polysaccharides/chemistry , Respiratory Tract Infections/microbiology , SARS-CoV-2/drug effects , Serratia marcescens/growth & development , Serratia marcescens/pathogenicity , COVID-19 Drug Treatment
11.
Bioelectrochemistry ; 142: 107894, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1330658

ABSTRACT

Extensive amounts of chlorine disinfectants have been applied to wastewater system since the outbreak of coronavirus disease 2019 (COVID-19), which inevitably affects the pollutant degradation via interfering with electron transfer mediated by electroactive bacteria. Herein, the response of electroactive biofilm (EAB) to chronic chlorine exposure was investigated. Results showed the EAB formed without exposure (EAB-0) exhibited a 53% and 123% higher current output than that formed with 0.1 mg L-1 (EAB-0.1) and 0.5 mg L-1 (EAB-0.5) chlorine, respectively. The chronic chlorine exposure of EAB boosted the contents of extracellular polymeric substances (EPS) in EAB-0.1 and EAB-0.5 by over secretion of extracellular polysaccharides. The EAB-0.1 and EAB-0.5 also presented lower electron exchange capacities (EECs) of EPS, coincided with reduced relative abundance of Geobacter from 61% in EAB-0 to 52% in EAB-0.5. This study provided new insights into the application of engineered EAB for wastewater treatment in a disinfection environment.


Subject(s)
Biofilms/drug effects , Chlorine/pharmacology , Disinfectants/pharmacology , Extracellular Polymeric Substance Matrix/metabolism , Time Factors
12.
Colloids Surf B Biointerfaces ; 206: 111935, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1305228

ABSTRACT

Silver nanoparticles (AgNPs) could be employed in the combat against COVID-19, yet are associated with toxicities. In this study, biogenic and biocompatible AgNPs using the agro-waste, non-edible Hibiscus sabdariffa stem were synthesized. Under optimized reaction conditions, synthesized green AgNPs were crystalline, face cubic centered, spherical with a diameter of around 17 nm and a surface charge of -20 mV. Their murine lethal dose 50 (LD50) was 4 folds higher than the chemical AgNPs. Furthermore, they were more murine hepato- and nephro-tolerated than chemical counterparts due to activation of Nrf-2 and HO-1 pathway. They exerted an apoptotic anti-ovarian cancer activity with IC50 value 6 times more than the normal cell line. Being functionalized with polydopamine and conjugated to either moxifloxacin or gatifloxacin, the conjugates exerted an augmented antibiofilm activity against Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii biofilms that was significantly higher than antibiotic alone or functionalized AgNPs suggesting a synergistic activity. In conclusion, this study introduced a facile one-pot synthesis of biogenic and biocompatible AgNPs with preferential anti-cancer activity and could be utilized as antibiotic delivery system for a successful eradication of Gram-negative biofilms.


Subject(s)
Anti-Bacterial Agents , Metal Nanoparticles , Silver , Animals , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Green Chemistry Technology , Hibiscus , Indoles , Mice , Microbial Sensitivity Tests , Polymers , Silver/pharmacology
13.
Molecules ; 26(12)2021 Jun 14.
Article in English | MEDLINE | ID: covidwho-1282538

ABSTRACT

Staphylococcus aureus (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) bacteria represent major infectious threats in the hospital environment due to their wide distribution, opportunistic behavior, and increasing antibiotic resistance. This study reports on the deposition of polyvinylpyrrolidone/antibiotic/isoflavonoid thin films by the matrix-assisted pulsed laser evaporation (MAPLE) method as anti-adhesion barrier coatings, on biomedical surfaces for improved resistance to microbial colonization. The thin films were characterized by Fourier transform infrared spectroscopy, infrared microscopy, and scanning electron microscopy. In vitro biological assay tests were performed to evaluate the influence of the thin films on the development of biofilms formed by Gram-positive and Gram-negative bacterial strains. In vitro biocompatibility tests were assessed on human endothelial cells examined for up to five days of incubation, via qualitative and quantitative methods. The results of this study revealed that the laser-fabricated coatings are biocompatible and resistant to microbial colonization and biofilm formation, making them successful candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Coated Materials, Biocompatible/pharmacology , Drug Resistance, Microbial/drug effects , Flavonoids/pharmacology , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemistry , Biofilms/growth & development , Coated Materials, Biocompatible/chemistry , Flavonoids/chemistry , Lasers/standards , Microbial Sensitivity Tests/methods , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/growth & development , Surface Properties
14.
Eur J Clin Microbiol Infect Dis ; 40(2): 373-379, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1033857

ABSTRACT

Quorum sensing (QS) inhibition is an essential strategy to combat bacterial infection. Previously, we have synthesized a series of thymidine derivatives bearing isoxazole and 1,2,3-triazole rings (TITL). Herein, the inhibitory effects of TITL on QS of Pseudomonas aeruginosa PAO1 were evaluated. In vitro results demonstrated that TITL effectively inhibited biofilm formation and reduced the virulence factors of P. aeruginosa PAO1. In combination with antibiotics, our TITL compounds significantly prolonged the lifespans of Caenorhabditis elegans N2 nematodes that were infected with P. aeruginosa PAO1 in vivo. In conclusion, TITL compounds are promising candidates for the treatment of antibiotic-resistant P. aeruginosa PAO1.


Subject(s)
Biofilms/drug effects , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Triazoles/pharmacology , Virulence/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Caenorhabditis elegans , Drug Resistance, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL